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A solution of the problem concerning the strain of an isotropic elastic space with 

a spherical cavity by arbitrary normal loads applied to the cavity surface is ob- 
tained in quadratures by the method elucidated in [l, 21. The corresponding axi- 

symmetric problem is solved for arbitrary normal loads and tangential loads act- 
ing in the meridian plane. As an illustration,a solution is presented of the prob- 

lem for an axisymmetric load distributed uniformly on an infinitely thin ring, 

and for the case of a concentrated normal force. 

1. Let us perform the investigation in a spherical r , 8 , q coordinate system. 
Let us first analyze the axisymmetric problem of the deformation of an isotropic elas- 

tic space r > R with a spherical cavity by arbitrary normal u (9) and tangential ‘t (9) 

loads applied to the sphere r = R. 

It is known [3] that the problem of the equilibrium of an axisymmetrically loaded 
body of revolution decomposes into two self-consistent problems: the problem of torsion 
relative to the axis of symmetry and the problem of deformation in the meridian plane. 

Let us limit ourselves to an analysis of the latter problem. 

Let us represent the external loads given on.the sphere r = R as series [3] (Pn (5) 

are Legendre polynomials) 

0 (0) = i b,P,(COSf3), % (0) = ; zn ““(Qs e, (1.1) 
Tl=s -1 

0 
2n+1 

- n = 2 s 0 (0) P, (CO9 9) sin 0 d9 
0 

(1.2) 

2n+l x 
T,, -- 2n (,n + 1) s r(e) 

dp,, (CO9 e) 

de sin e de 
0 

The boundary conditions on the sphere r = R are 

u, = - u (e), z?, = -Z (e), T,, = 0 (1.3) 
The solution of the equilibrium equations in displacements which vanishes at infinity 

can be represented as [3] 

Ut= 5 [++&+3-4v)-~l (n+qP,@ose) 

Us =;,> 
n=l 

(-n+4-44Y)+$2 apn(dceose) 
r 1 

(1.4) 

Substituting the stresses ur and rcre determined by means of the displacements U, and 
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~a into the boundary conditions and taking (1.1) into account, we obtain a system of 
two linear algebraic equations for the constants A, and B, (n = 1, 2, . . .) 

on _ A (n + 1) (n + 2) -- 7% 2G 
n (n2 + 3n - W _ B 

R n+i ‘n 
R n+3 

(1.5) 

TiL,A 
2G n 

na ;;+; 2v + B, L$ 

Here G .is the shear modulus, and Y is the Poisson’s ratio. The determinant of this 
system is not zero for all values of n = 1, 2, . . . 

The solution of the system (1.5) is the following 

A,= %+(n+l)z,, Rn+r 
4GA 

, A=nz+(i -2v)nfl-v (1.6) 

B =a,(n2-2+2v)+z,,n(n2+3n-2v)Rn+3 
n 

4GA (n + 2) 

Substituting the values found for the coefficients A,, and B, into (1.4) and taking 
account of the relationship (1.2), we obtain 

UT = I,,, ug = 134 

x 

Is, = & . 
a 

[e (a) Ii, + z (a) Mk] sin a da 

0 
Here 

; HI = ~2 + Sit’Pn (cos 0) Pn (qs a) 

(1.7) 

(1.8) 

k Hz = S;;’ P, (cos 0) dpn*f;s ‘) 
x 

4 [_I~ = #) dP~ (cOs 0) p (cos a) 
n 34 d0 n 

k 11~ = S(B) d.P, (~0s 0) aPn (~0s a) 
x 34 de da 

Sf;B' = ; (Ajksn + Amznt2), 
R z r= _ 
7. 

,L=l 

.$’ = i (Bp? + BknzntZ) 

==l 

A =n(2n+l)(n+3--W 
In A 

A,~=__ W+f)(n+l) (nz--2+fv) (1.9) 

(n + 2) A 

BIn=(2n+1)(n+3-4v), B =_(an+l)(n*+3~1-2v) 
A 2n 

tn+2) A 

A 
3n 

=_ (2n+1)@-4+fvj A =(2'L+1)(nZ--+fv) 

A 7 4n 
(18 + 2) A 

B 
3n 

= _ (2n + 1) (n - 4 f 4v) B =(2n+1)(n2+3a - 2v) 

nA 4n 
(n+ 1) OL+~) A 

The coefficients Aj, and Bi, (i = 1, 2, 3, 4) can be represented as follows (U and 

d are complex-conjugate roots of the equation A = 0): 

‘tln = (an + 1) + 4 (1 - 1’) + n& + -& (1.10) 
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Azn = - (2n + 1) + 4 (1 -Y) - 2 + cz + ,+ 
n+2 n-a E 

B1,=2+D1+U1, Ba 
n-a n---a 

Ba,=-Z-L+++- 
n+2 n-a n--8 

A,n=-2+Cs+es) 
n-a n--a 

A,,,=2- L+&+C, 
nS2 n-a n--d 

B,,=fi+&+> 
n n-u n-z 

B4, = -?- - 
nfl 

2fs!__+_??_ 
n+2 n-a n-6 

a=- +Jdcw 1-2v 2’ 
2 

The quantities Ci and Di (i = 1, 2, 3, 4) depend only on the Poisson’s ratio 

CI=_2+fv-4vaf i 3+v;~2v~+8va 
3- va 

C?=1+2v_4v2+i2-‘V-4V2+8VS 

v/3-_ 

DI = $ 
L 

5_44Y+i3--Ov+8v~ 

Jf3q 

Dz=Ca-Cl-DI, cs=- 3C4, C4-CCa-Cl 
2 

Ds = - 304, D4=l+i 2(1-v) 
-t/c-z? 

Let US convert (1.8) for the functions Hi (i = 1, 2, 3, 4) by using the relationship 
(which follows from the theorem for addition of spherical functions) 

n/a 
P,, (co9 9) P, (cos 2) = f 

s 
P, (A) w 

We obtain 0 

h = cos (0 + a) + 2 sin 8 sin a sin2$ 

The series in (1.11) can be summed if (1.10) is taken into account and the following 
formulas are used [l, 4): 

i nz”P, (h) = 2 _ _ a 1 

-1 
ax S(Z,h) 
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1 
y-a+") 

@I, Rea<O 

n=l 
SW, A) 

0 

To the accuracy of a factor --1 / u the last integral agrees with a hypergeometric 

function of two variables Fr (--a, rl9, I/,, 1 - a; z$ arc ‘OS ‘, seei arc ‘OS “), as follows 

from its integral representation [5]. 

Also taking into account that [4] 

n’z W - K tk) s S(5,)-77 
h2=5~-22cos(e+a)+l 

0 
J&p = 4 x sin 0 sin a 

where K (k) is the complete elliptic integral of the first kind, we finally obtain 

Hr = - 5+fi --~nz.+2(1--)(1+2’)K~+ (1.12) 

1 

H2 =(I - z8)? !ii!d f Re DI + D& _ say a K (kl) + -- 
au h Y 

i+a a3 k 

hla=Zya-22ycos(0+a)+1, kshs=4xysinOsina 

Therefore, the solution (1.7) of the first axisymmetric boundary value problem of 
elasticity theory for a space with a spherical cavity is represented in quadratures. 

Using the properties of the complete elliptic integrals of the first and second kinds 
and of their derivatives [4], it can be shown that the functions Hi (2, 8, a) (i = 1, 2, 3, 

4) are continuous for r> R (0 < t < 1). They have discontinuities at CC = 0 on the 
sphere r = R . 

As a - 0 , the following representations hold : 

Hl,a (1, 8, a) sin a = - 2 (1 - Y)ln IfI - a 1 -/- &A (8, a) 
Hz,3 (I, 8, a) 2 sin a = (I--2~)n sgn (a - 3) -i- Q2,3 (0, al 

The functions Qi (3, a) (i = 1, 2, 3, 4) are bounded and contonuous for 
Let us note the following properties of the functions Hi: 

0 < 8, e < Z. 

H~,~(z, 8, TC - a) = H1,4 (5, JC - 8, a), Hz.3 (5, 9, JI - a) = - Hz.3 (2, TX - 0, aj 

2, As an example, let us consider the problem of the deformation of an elastic space 
r > R with a sphericalcavity by a normal force P and a tangential force Q distributed 
uniformly in an infinitely thin ring r = R, f3 = It+,. The load distributed along a line 

should certainly be considered as the limit value of the corresponding surface load. 
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The boundary conditions for t = R are (6 (x) is the Dirac delta function) 

u _ __ pa (a - 00) 
r PnRa sin 90 ’ 

Tre= _ Q8(a -00) , 
&RZsin 80 

T TI = o (2.1) 

Substituting the values o (a) = - ur and z (a) = - ~~~ given by the relationships 
(2.1) into the solution (1.7), we obtain 

ur = Ilao, “0 = Z,q*O 

I. o= 
3k 

~~~[PHj(x,~, 60)-t QHk(d8dl 

The functions HI (f = 1, 2, 3, 4) are given by (1.12) in which we should set a = Oo. 
It is seen from (1.7) that the functions IIi are Green’s functions of the first axisymmet- 

ric boundary value problem of elasticity theory for a space with a spherical cavity. 

3, Let us consider the problem of the deformation of an elastic space r > R with 

a spherical cavity by a normal concentrated force p applied at the pole 8 = 0 of the 

sphere r = R. 
The boundary conditions at r = R are 

u, = - ~8 6-v 
nR2 sin 8 ’ 

TCre = z,, -- 0 

According to (1.7), the solution of the problem is 

Here, in conformity with (1.12) 

G fll (5, 8, 0) = I + x2 - s + !q$ [i - xz + 4 (I + 22) (f ---)I - 

x(1--x2)(5-c0se) _cose~nS+X-COSe + 
s3 1 - cos 0 

Re Cl + c2x2 1 1 
--a,--,-, 

1 - xe+’ a 2 2 a; x2’, )I 
HS (x, 8, 0) = z (Is; x2) + (I - 2 Sin2 e;;ii2t -- ‘) ‘OS ’ + T n Sill 0 

In ’ + ’ - ‘OS ’ _ x Re c3 f c4x2 F1 

1 -cosO i-a 
1 _ a, $, , 3 , 2 _ a, xeie, xc-i@ 

L 2 

s = 6x2 -2x cos 0 + 1 

4. The solution obtained for the problem of the effect of a concentrated force is a 
Green’s function of the non-axisymmetric boundary value problem for an elastic space 

with a spherical cavity. 

If an arbitrary normal load o = u (9, q) is applied to the surface r = R , then the 
solution is U7 .:-: Jl, UB = Ja 

2x * 

J,=d- 
4n2G 

k(4, 8”, 0) sin %dz 

0 0 

0” = arc cos [cos 0 cosa + sin 0 sin u cos (q - @)I 

Therefore, a closed solution has been obtained for the problem of deformation of an 
elastic space with a spherical cavity by an arbitrary non-axisymmetric normal load 
applied to the cavity surface. 
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Hypotheses relative to the character of variation of the electromagnetic field 
and elastic displacements over the thickness of a plate were formulated in [l, 

23 on the basis of solutions obtained by the method of asymptotic integrationof 
the three-dimensional equations of magnetoelasticity. Two-dimensional equa- 

tions of magnetoelasticity, in which unknown boundary values of the components 

induced by the elec~omagnetic field enter, have been obtained on the basis of 
these hypotheses. The equations obtained must hence be examined in combina- 
tion with the Maxwell equations for the medium surrounding the plate under 

general boundary conditions at the interface of the two media, This means that 
the ~gnet~lastici~ problem nevertheless remains three-dimensional. 

On the basis of the mentioned hypotheses for the magnetoelasticity of thin 

bodies [l, 21, an attempt is made in this paper to reduce the three-dimensional 

magnetoelasticity problem to a two-dimensional problem, which will substan- 
tially facilitate the investigation of questions about the magnetoelasticity of 
thin bodies. 

1, Let an isotropic plate of constant thickness 2 h, fabricated from a material with 
finite electrical conductivity, be in an external stationary magnetic field with a given 
magnetic induction vector B, = (BOA, B,,, B,,J. The problem is solved under the as- 

sumption that the Maxwell equations for a vacuum are valid for the medium surround- 
ing the plate. It is also assumed that the influence of displacement currents on the elas- 
tic vibrations characteristics can be neglected. 

The elastic and electromagnetic properties of the plate material are characterized 


